Rubella IgM MAX™ Antigen

High purity bead-based, suspension and multiplex IgM Rubella assays.

#6300 Purified Rubella IgM MAX™ Antigen – Viral Strain HPV77

- Purified Rubella antigen consisting of E1 and E2 glycoproteins in their native configuration
- Capsid free preparation to reduce IgM cross-reactivity
- Patented process (Patent #6,670,117 and #6,872,396 B2)

Rubella virus is an enveloped, single-stranded RNA virus. Its genome is enclosed in a capsid that is surrounded by a lipid bilayer containing two viral envelope glycoproteins, E1 and E2. Research shows that in the acute stage of Rubella viral infection, IgM antibodies react specifically with these glycoproteins. Rubella IgM assays are prone to a high-degree of cross-reactivity. It has been suggested that the capsid protein is responsible for interference in Rubella IgM immunoassays through non-specific protein interaction.

Meridian’s next generation Rubella IgM MAX™ antigen is prepared by extraction of Rubella antigens from cells infected with Rubella Virus strain HPV77 using a patented process (Patent #6,670,117 and #6,872,396 B2).

The antigen is high purity, capsid-free and consists of the E1 and E2 antigens in their native configuration.

Its superior performance over other antigen preparations has been demonstrated in multiplex bead-based assays that are known to require high purity antigens to prevent non-specific protein interactions from causing assay interference. In addition, the Rubella IgM MAX™ antigen is highly suited for quantitative assays and other particle-based suspensions assays.
Rubella IgM Population Study

In-house ELISA using purified Rubella Antigen
(Product #6076) 100 Normal Samples using Standard Ag.

In-house ELISA using Rubella IgM MAX™ Antigen
(Product #6300) 100 Normal Samples using Glycoprotein Ag.

Rubella IgM Max exhibits greater specificity for Rubella IgM antibodies compared Antigen #6076. It does not bind to lower-affinity antibodies which might be non-Rubella but related viruses or other proteins that cause cross-reactivity in IgM diagnostic assays.

Use of urea increases the stringency of binding by removing reactivity from low affinity antibodies.